


Saturated () SP - Single Pressed; DP - Double Pressed; TP - Triple Pressed

|                                             | STEARIC ACID<br>(40-50% Steeric<br>Content) (1)                                                                    | 7,607  | 123,458 | 18,231 | 43,528  | 92,839  | 2,105 | 138,386 | 10,901 |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|---------|--------|---------|---------|-------|---------|--------|
| HYDROGENATED<br>ANIMAL &<br>VEGETABLE ACIDS | 60 C meximum<br>titer &<br>minimum I.V. 5 (2a)                                                                     | 5,263  | 103,113 | 1,868  | 592     | 101,946 | 1,343 | 103,900 | 6,344  |
|                                             | 57 C minimum<br>titer & mexi-<br>mum 1.V. under 5 (2b)                                                             | 3,690  | 126,814 | 20,416 | 50,184  | 96,424  | 372   | 146,982 | 3,938  |
| HVD<br>A<br>VEGE                            | Minimum<br>Stearic Content<br>of 70% (2c)                                                                          | 1,206  | 30,738  | 3,322  | 7,552   | 24,965  | 522   | 33,039  | 2,229  |
|                                             | HIGH PALMITIC<br>(Over 60% pelmitic<br>1.V. meximum 12) (3)                                                        | 2,212  | 8,294   | 184    | 4,396   | 5,182   | 201   | 9,779   | 911    |
|                                             | HYDROGENATED<br>FISH & MARINE<br>MAMMAL<br>fatty scids (4)                                                         | 329    | 7,262   | 173    | 1,065   | 5,946   | 3     | 7,014   | 750    |
|                                             | LAURIC-TYPE ACIDS<br>(I.V. minimum 5-Sepon<br>val. minimum 245-<br>including coconut, palm<br>kernel, bebassu) (5) | 3,608  | 69,314  | 3,269  | 17,678  | 53,971  | 277   | 71,926  | 4,265  |
| FRACTION-<br>ATED<br>FATTY<br>ACIOS         | C10 or lower,<br>including capric (6a)                                                                             | 794    | 18,380  | 349    | 758     | 16,000  | 1,733 | 18,491  | 1,032  |
|                                             | Lauric and/or<br>myristic content<br>of 55% or more (6b)                                                           | 2,665  | 16,249  | 2,262  | 5,480   | 12,033  | 196   | 17,709  | 3,467  |
|                                             | TOTAL-<br>SATURATED<br>FATTY ACIDS                                                                                 | 27,376 | 503,622 | 50,074 | 131,234 | 409,240 | 6.752 | 547,226 | 33,846 |

Unsaturated 💩 ND - Not distilled; SD - Single distilled; MD - Multiple distilled

| OLEIC ACID<br>(red oil) (7)                                      | 8,944  | 154,571 | 7,886  | 69,235  | 85,856  | 2,696  | 157,787 | 13,814 |
|------------------------------------------------------------------|--------|---------|--------|---------|---------|--------|---------|--------|
| ANIMAL FATTY<br>ACIDS<br>other than cleic<br>(I.V. 36 to 80) (8) | 3,701  | 135,862 | 22,479 | 47,788  | 109,859 | 209    | 157,856 | 4,188  |
| VEGETABLE OR<br>MARINE<br>FATTY ACIDS<br>(I.V. maximum 115) (9)  | 161    | 9,464   | 71     | 8,441   | 909     | 7      | 8,367   | 329    |
| UNSATURATED<br>FATTY ACIDS<br>(1.V. 116 to 130) (10)             | 2,516  | 17,394  | 1,199  | 8,877   | 9.757   | 15     | 18,649  | 2,460  |
| UNSATURATED<br>FATTY ACIDS<br>(I.V. over 130) (11)               | 1,673  | 21,446  | 30     | 235     | 16,359  | 5,099  | 21,693  | 1,458  |
| TOTAL<br>UNSATURATED<br>FATTY ACIDS                              | 16,995 | 338,727 | 31,665 | 134,576 | 222,740 | 8,026  | 366,342 | 22,045 |
| TOTAL ALL<br>FATTY ACIDS<br>SATURATED &<br>UNSATURATED           | 44,371 | 842,349 | 81,739 | 266,810 | 631,980 | 14,778 | 912,568 | 55,891 |

## 

Diet-induced Changes in Plasma Membrane Fatty Acids Fatty Acids of Cerebrosides in Developing Human Brain Regions Analysis of Ovine Medium Chain-Length Fatty Acids Structural Model of Cholesterol-Phosphatidylcholine Complex Hydroxycitrates: Acetyl CoA Carboxylase and Lipid Synthesis Absolute Configuration at C-20 and C-24 of Ergosterol in Fungi Synthesis of Ketones and Complex Lipids during Development Erucic Acid and Phospholipids of Heart Cells in Culture Delayed Conversion of Squalene to Sterols During Development Liver Arachidonate after Refeeding Interaction of Colipase with Lipases of Various Origins Lipids of *Cronartium fusiforme* Basidiospores Alkyl- and Alkenylresorcinols in *Rapanea laetevirens trans* Isomers of Octadecenoic Acid in Human Milk Natural antioxidant isolated from spices

<u>~~~~~~~~~</u>

Work is continuing by a New Jersey firm on commercial development of a natural antioxidant extracted from rosemary and sage under a process that was patented last year by Stephen S. Chang and his associates of Rutgers University.

The natural antioxidant is a potential replacement for synthetic antioxidants in food products. Some consumers have been voicing concern about potential cumulative toxicity of synthetic additives.

Preservatives, whether natural or synthetic, help extend the shelf life of foods, Chang explains, thus reducing food costs for consumers. While there is no automatic assurance that a component of a natural food is totally safe, Chang notes that rosemary and sage have been used in human foods for thousands of years. Nevertheless, toxicity tests of the Rosemary Extract are now in progress.

The natural antioxidants are solvent extracted from the herb, washed with hot water, bleached with activated carbon, and then put through vacuum distillation in triglycerides. The result is an odorless, tasteless antioxidant totaling about 10 percent of the weight of the original rosemary.

Chang says the natural preservatives could replace synthetics such as BHT, BHA, TBHQ, and PG, now the most commonly used synthetic antioxidants. Food processors may use up to \$72 million worth of antioxidants by 1985, according to one estimate in Food Technology last year.

The natural preservative from rosemary has been successfully tested in salad oils, shortenings, and potato chips, Chang said. It shows promise of performing better than synthetics at high temperatures. The rosemary extract also performs better in vegetable oils than do the synthetics, Chang says, which may make it valuable to the soybean oil industry. Food processors used 7.4 billion pounds of soybean oil last year. An effective, natural antioxidant would reduce the need for hydrogenation to extend product shelf life, thus reducing costs. Furthermore, the wholesomeness of the various isomers produced by hydrogenation are being questioned.

Presco Food Products Co. of Flemington, NJ, has taken a license on Chang's patent (U.S. 3,950,266). The new product does not have a name since processing development is still being worked out, but Presco chief Richard Kenyon foresees heavy demand for the product when it is ready for the market. The firm already has received inquiries from firms that want to manufacture and from firms that want to purchase the natural antioxidant, Kenyon says.

"We hope to have commercial use within a year," Dr. Chang said recently. Work is continuing on producing a pilot plant, to be followed by full-scale production.

The Rutgers lab continues researching other potential sources for natural antioxidants, Dr. Chang said. Rosemary and sage were among many potential sources investigated over a period of years, he explained. The work with those two spices began about six years ago when Dr. Biserka Ostric-Matijasevic of Yugoslavia spent his sabbatical working in the Rutgers laboratory.

Chang describes the discovery of the antioxidants as a "bonus" from the basic long-term research on autoxidation of lipids. The lab is still working to elucidate the chemical structure of the active antioxidant components in the extracts of rosemary and sage.

Spices, valued in former days for their ability to preserve food, may again be recognized for that quality, as well as for the flavor they add.